Jump to content

Old..new..old..new..back to old again compression theory??


Recommended Posts

Posted

New CPR May Offer Better Results

Leslie Geddes, the Showalter Distinguished Professor Emeritus in Purdue's Weldon School of Biomedical Engineering, demonstrates a new technique for performing cardiopulmonary resuscitation. The method promises to be more effective than standard CPR because it increases nourishing blood flow through the heart by 25 percent. Geddes has developed the new method, called "only rhythmic abdominal compression," or OAC-CPR, which works by pushing on the abdomen instead of the chest.

WEST LAFAYETTE, Ind. - A biomedical engineer at Purdue University has developed a new method to perform cardiopulmonary resuscitation that promises to be more effective than standard CPR because it increases nourishing blood flow through the heart by 25 percent over the current method.

A new technique is desperately needed because conventional CPR has a success rate of 5 percent to 10 percent, depending on how fast rescuers are able to respond and how well the procedure is performed. For every one minute of delay, the resuscitation rate decreases by 10 percent.

"In other words, at 10 minutes, the resuscitation is absolutely ineffective," said Leslie Geddes, Showalter Distinguished Professor Emeritus in Purdue's Weldon School of Biomedical Engineering. "Any medical procedure that had that low a success rate would be abandoned right away. But the alternative is not very good, either: Don't do CPR and the person is going to die."

Geddes has developed the first new CPR alternative, called "only rhythmic abdominal compression," or OAC-CPR, which works by pushing on the abdomen instead of the chest.

"There are major problems with standard CPR," Geddes said. "One is the risk of breaking ribs if you push too hard, but if you don't push hard you won't save the person. Another problem is the risk of transferring infection with mouth-to-mouth breathing."

The new CPR method eliminates both risks, Geddes said.

Findings will be detailed in a research paper appearing this month in the American Journal of Emergency Medicine, published by Elsevier Inc. The paper was authored by Geddes and his Purdue colleagues Ann E. Rundell, assistant professor of biomedical engineering, biomedical engineering doctoral student Aaron Lottes, and basic medical sciences graduate students Andre Kemeny and Michael Otlewski.

In standard chest-compression CPR, which has been in practice since the 1960s, the rescuer pushes on the chest and blows into the subject's mouth twice for every 30 chest compressions. However, the risk of infection is so grave that many doctors and nurses often refuse to administer mouth-to-mouth resuscitation. In one 1993 study of 433 doctors and 152 nurses, 45 percent of doctors and 80 percent of nurses said they would refuse to administer mouth-to-mouth resuscitation on a stranger.

"This is the real world that nobody knows about, and it's a sobering thought," Geddes said.

OAC-CPR eliminates the need to perform mouth-to-mouth resuscitation.

The American Heart Association requires that rescuers administering CPR push with enough force to depress the chest 1 and a half to 2 inches at a rate of 100 times per minute.

"To depress the chest 1.5 to 2 inches takes 100 to 125 pounds of force," Geddes said. "So you have to push pretty hard and pretty fast, and two people are needed to perform it properly. One blows up the lungs and the other compresses the chest. And when the one who's compressing the chest gets tired, they change positions."

OAC-CPR requires only one rescuer.

Instead of two breaths for every 30 chest compressions, the new procedure provides a breath for every abdominal compression because pushing on the abdomen depresses the diaphragm toward the head, expelling air from the lungs. The release of force causes inhalation.

Researchers have known since the 1980s that pushing on the abdomen circulates blood through the heart. The idea was originated by Purdue nursing doctoral student Sandra Ralston, Geddes said.

"She made the remarkable observation that if you pushed on the abdomen after each chest compression you could double the CPR blood flow," he said. "So I started thinking, what would happen if you just pushed on the abdomen and eliminated chest compression entirely?"

The procedure provides a new way to effectively perform "coronary perfusion," or pumping blood through the heart muscle, which is critical for successful resuscitation because the heart muscle is nourished by oxygenated blood, Geddes said.

"Unfortunately, in standard chest-compression CPR, blood sometimes flows in the wrong direction, which means the coronary blood flow goes backward, bringing de-oxygenated blood back into the heart muscle," Geddes said. "This retrograde flow reduces the likelihood of resuscitation."

Findings showed that OAC-CPR eliminates this backward flow.

The Purdue researchers compared coronary artery blood flow during standard chest-compression CPR with the flow resulting from only abdominal compression CPR. Findings showed that using the new method and pushing with the same force recommended for standard CPR provided 25 percent more blood flow through the heart muscle without retrograde flow in the coronary arteries.

The researchers followed the standard recommended by the American Heart Association, pushing with 100 pounds of pressure 100 times per minute.

"With OAC-CPR, you really don't have to press as hard or as often, but we followed the American Heart Association standard to avoid possible criticism from people who could have said we didn't observe the standard," Geddes said.

Another benefit of OAC-CPR is that it eliminates rib fractures, which are commonly caused by compressing the chest. Rib fractures cause the chest to recoil more slowly, but effective CPR requires that rescuers wait until the chest recoils fully before compressing.

Geddes created a wooden "pressure applicator" that resembles a scaled-down version of a baseball home plate. It is contoured so that it can be used to compress the abdomen without pushing on the ribs. However, a rescuer could push with the hands to perform the procedure if no applicator were available.

Abdominal organs contain about 25 percent of the total blood volume in the body.

"You can squeeze all of that into the central circulation when you press on the abdomen," Geddes said.

Whether the procedure gains widespread acceptance depends on whether other researchers can duplicate the results.

"In research, you publish data and then the scientific community looks at the data and tries to duplicate it to verify that it works," said Geddes, who was awarded the National Medal of Technology from President George W. Bush in a White House ceremony on July 27. It is the nation's highest honor for technological innovation.

The research was funded by the Purdue Trask Fund.

Posted

Extremely interesting. Glad to see we're still studying the topic and trying to improve resuscitation.

I do, though wonder, what the studies were based off of. What the actual resus rate would be. And what downsides or side effects there might be? (damage to internal organs?) Does the automatic inhalation and exhalation cause more/less buildup of air in the stomach?

Looks promising, though. I'm interested to hear the rates, both to standard CPR and other systems like CPR-Only-No-Breaths systems.

Posted

Thank-God we are still funding old stuff. I wonder what those researchers would do without attempting to prove something that has been discussed and researched and re-researched, eventually someone has to believe in it.

This has been disproven and then only to reappear at the least of 8 -10 times in the past 25 years.

Maybe I can get some research grant money to prove MAST trousers still should be used...

R/r 911

Posted

One of my family members watched either a commercial or infomercial for the "home plate" to do the abd. compressions with and asked me about it. Never seen this commercial or even heard of what it was. Extremely interesting!

Posted
Findings will be detailed in a research paper appearing this month in the American Journal of Emergency Medicine, published by Elsevier Inc. The paper was authored by Geddes and his Purdue colleagues Ann E. Rundell, assistant professor of biomedical engineering, biomedical engineering doctoral student Aaron Lottes, and basic medical sciences graduate students Andre Kemeny and Michael Otlewski.
Does anyone have access this journal and article?
Posted

I've got electronic assess to the journal, but the latest they have online is the July 2007 issue. That said, there was an interesting article in the July issue about using motorcycles for EMS first response [average response was in the 4 minute range in the study. Authors suggested that it would be useful for calls that are either too ambiguous for EMD triage or truly life threatening].

Posted
It's all a conspiracy by the American Heart Association to make us pay more money for their classes. BWAAHAAHAAAA!!!!!

I used to "roll my eyes" on comments like this and chuckle... but; after seeing the "New Advanced Airway" course, I am going to have to agree with you. Apparently in the wisdom of AHA, they removed intubation skills in ACLS and now (oh! How surprising!) developed another course on intubation and advanced airway devices (combitubes, etc) for an additional fee of course....

I guess, why have it in a course, when you can develop another course.. and so one. Who knows what the next one will be? .. Maybe IV therapy, administering medications, defib, very basic ECG interpretation?... Think of all the possibilities!

R/r 911

Posted
"There are major problems with standard CPR," Geddes said. "One is the risk of breaking ribs if you push too hard, but if you don't push hard you won't save the person. Another problem is the risk of transferring infection with mouth-to-mouth breathing."

The new CPR method eliminates both risks, Geddes said.

However, the risk of infection is so grave that many doctors and nurses often refuse to administer mouth-to-mouth resuscitation. In one 1993 study of 433 doctors and 152 nurses, 45 percent of doctors and 80 percent of nurses said they would refuse to administer mouth-to-mouth resuscitation on a stranger.

I love this part of the article. Let's not mention the fact that there are countless other ways that ventilations can be delivered besides mouth-to-mouth ventilation. Let's make all the doc's and nurses look like selfish bastards for not wanting to contract Hep B.

It's nice to see research is being done, but when I see things like this, it makes me wonder about the overall methodology used in the research itself. I wonder if this guy has ever taken a CPR course, and had his instructor tell him to use a barrier device.

This thread is quite old. Please consider starting a new thread rather than reviving this one.

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

×
×
  • Create New...